If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-200x+4950=0
a = 1; b = -200; c = +4950;
Δ = b2-4ac
Δ = -2002-4·1·4950
Δ = 20200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20200}=\sqrt{100*202}=\sqrt{100}*\sqrt{202}=10\sqrt{202}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-10\sqrt{202}}{2*1}=\frac{200-10\sqrt{202}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+10\sqrt{202}}{2*1}=\frac{200+10\sqrt{202}}{2} $
| 12m+50=948.88 | | 45+9u=18u | | x+84=3x+-84 | | 4·(9x-8)=76 | | x+x*3-x*3=16 | | x+55=6x-40 | | 11x+89+10x+28=180 | | x=-3=-1 | | 4·(4x-8)=16 | | X-y=10.8 | | (5/n)*16=10 | | 4x+52=12x+12 | | 4x+49=3x+51 | | 32-v=3v | | 4p+(2p+9)=90 | | x-6,1=6.9 | | 6v+8-6=3v-4v+9 | | -x/3=-35 | | 7/8x+1/7=5 | | -50=y/7 | | 3/4b-2=4 | | u+9=3 | | x+9=x•2–4 | | (3x-7)18=(3x+3)12 | | 5v=8v+9 | | -8(4x-1)=-20 | | 8+3k=2k | | 2(x+4)+4=20 | | 17x+6=9x-10 | | 6x+3x-2x=49 | | -6=1/2w | | 14/8=n/20 |